Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe.
نویسندگان
چکیده
Phytochelatins (PCs), a family of heavy metal-inducible peptides important in the detoxification of heavy metals, have been identified in plants and some microorganisms, including Schizosaccharomyces pombe, but not in animals. PCs are synthesized enzymatically from glutathione (GSH) by PC synthase in the presence of heavy metal ions. In Arabidopsis, the CAD1 gene, identified by using Cd-sensitive, PC-deficient cad1 mutants, has been proposed to encode PC synthase. Using a positional cloning strategy, we have isolated the CAD1 gene. Database searches identified a homologous gene in S. pombe, and a mutant with a targeted deletion of this gene was also Cd sensitive and PC deficient. Extracts of Escherichia coli cells expressing a CAD1 cDNA or the S. pombe gene catalyzing GSH-dependent, heavy metal-activated synthesis of PCs in vitro demonstrated that both genes encode PC synthase activity. Both enzymes were activated by a range of metal ions. In contrast, reverse transcription-polymerase chain reaction experiments showed that expression of the CAD1 mRNA is not influenced by the presence of Cd. A comparison of the two predicted amino acid sequences revealed a highly conserved N-terminal region, which is presumed to be the catalytic domain, and a variable C-terminal region containing multiple Cys residues, which is proposed to be involved in activation of the enzyme by metal ions. Interestingly, a similar gene was identified in the nematode, Caenorhabditis elegans, suggesting that PCs may also be expressed in some animal species.
منابع مشابه
Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast.
Phytochelatins play major roles in metal detoxification in plants and fungi. However, genes encoding phytochelatin synthases have not yet been identified. By screening for plant genes mediating metal tolerance we identified a wheat cDNA, TaPCS1, whose expression in Saccharomyces cerevisiae results in a dramatic increase in cadmium tolerance. TaPCS1 encodes a protein of approximately 55 kDa with...
متن کاملFission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis.
Much of our dietary uptake of heavy metals is through the consumption of plants. A long-sought strategy to reduce chronic exposure to heavy metals is to develop plant varieties with reduced accumulation in edible tissues. Here, we describe that the fission yeast (Schizosaccharomyces pombe) phytochelatin (PC)-cadmium (Cd) transporter SpHMT1 produced in Arabidopsis (Arabidopsis thaliana) was loca...
متن کاملGlutathione synthetase: similarities of the proteins from Schizosaccharomyces pombe and Arabidopsis thaliana.
Glutathione synthetase predicted from the reported gene sequence from Schizosaccharomyces pombe is substantially smaller than the equivalent protein predicted from the cDNAs sequenced from Arabidopsis thaliana, Saccharomyces cerevisiae and other eukaryotes. Sequence alignments of the proteins encoded by the cDNA clones for glutathione synthetase from Arabidopsis and S. pombe show that the Arabi...
متن کاملOverexpression of genes involved in phytochelatin biosynthesis in Escherichia coli: effects on growth, cadmium accumulation and thiol level.
In Escherichia coli, heterologous production of Schizosaccharomyces pombe phytochelatin synthase (PCS) along with overproduction of E. coli serine acetyltransferase (SAT) and gamma-glutamylcysteine synthase (gammaECS) was achieved and resulted in the accumulation of phytochelatins in bacterial cells. Overproduction of either gammaECS alone or simultaneous production of all three proteins in bac...
متن کاملAspartyl aminopeptidase of Schizosaccharomyces pombe has a molecular chaperone function.
To screen chaperone proteins from Schizosaccharomyce pombe (S. pombe), we prepared recombinant citrate synthase of the fission yeast as a substrate of anti-aggregation assay. Purified recombinant citrate synthase showed citrate synthase activity and was suitable for the substrate of chaperone assay. Several heat stable proteins including aspartyl aminopeptidase (AAP) for candidates of chaperone...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant cell
دوره 11 6 شماره
صفحات -
تاریخ انتشار 1999